Carbon nanofiber mesoporous films: efficient platforms for bio-hydrogen oxidation in biofuel cells.
نویسندگان
چکیده
The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells.
منابع مشابه
Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells
This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely explo...
متن کاملCellulose Sulfuric Acid: As an Efficient Bio Polymer Based Catalyst for the Selective Oxidation of Sulfides and Thiols by Hydrogen Peroxide
Cellulose sulfuric acid as a bio-polymer based solid catalyst efficiently catalyzes the selectively oxidation of sulfides to sulfoxides and thiols to disulfides using hydrogen peroxide as a green oxidant with good yields at room temperature. The developed method offers a number of advantages such as high selectivity, mild reaction conditions, simple operation, cleaner reaction profiles, low...
متن کاملAdditive-Driven Self-Assembly of Well-Ordered Mesoporous Carbon/ Iron Oxide Nanoparticle Composites for Supercapacitors
Ordered mesoporous carbon/iron oxide composites were prepared by cooperative self-assembly of poly(tbutyl acrylate)-block-polyacrylonitrile (PtBA-b-PAN), which contains both a carbon precursor block and a porogen block, and phenol-functionalized iron oxide nanoparticles (NPs). Because of the selective hydrogen bonding between the phenol-functionalized iron oxide NPs and PAN, the NPs were prefer...
متن کاملSelective oxidation of sulfides to sulfoxides by a vanadium-based catalyst using 30% hydrogen peroxide
The vanadium-based catalyst, acts as a homogeneous catalyst for the selective oxidation of various kinds of sulfides with 30% aqueous H2O2. Vanadium-based catalyst was successfully used as the oxygen source for the oxidation of sulfides to sulfoxides for the first time. The sulfoxides were obtained in a good way to high yields without any detectable over-oxidation to sulfones under normal condi...
متن کاملSelective oxidation of sulfides to sulfoxides by a vanadium-based catalyst using 30% hydrogen peroxide
The vanadium-based catalyst, acts as a homogeneous catalyst for the selective oxidation of various kinds of sulfides with 30% aqueous H2O2. Vanadium-based catalyst was successfully used as the oxygen source for the oxidation of sulfides to sulfoxides for the first time. The sulfoxides were obtained in a good way to high yields without any detectable over-oxidation to sulfones under normal condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2014